0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Найден генетический путь лечения возрастной тугоухости

Наследственная тугоухость

Наследственная тугоухость – одна из форм врожденного нарушения слуха, обусловленная генетическими мутациями и по этой причине способная передаваться по наследству от родителей потомству. Симптомами данного состояния являются ослабление слуха различной степени тяжести, нередко возникающее в первые месяцы и годы жизни ребенка (очень редко – после 6-ти лет), а также вторичные речевые нарушения. Диагностика наследственной тугоухости осуществляется на основании данных аудиометрических исследований (аудиометр, звукореактотест), наследственного анамнеза больного и молекулярно-генетического анализа. Специфического лечения наследственной тугоухости не существует, больным нередко требуется обучение в специализированных центрах и реабилитация.

Общие сведения

Наследственная тугоухость – широкая группа различных генетических заболеваний, которые сопровождаются ослаблением слуха вплоть до полной глухоты (в зависимости от формы патологии). Этими заболеваниями обусловлено более половины случаев раннего ослабления слуха – остальные варианты являются следствием пренатального повреждения плода или приобретенной в раннем детстве тугоухости. Подобные состояния известны очень давно. Они активно изучались отоларингологами, неврологами, а в XX веке и врачами-генетиками, которые смогли определить наследственную природу у части подобных заболеваний.

Было также обнаружено, что одни разновидности наследственной тугоухости обнаруживаются в сочетании с иными симптомами генетического заболевания (синдромальные формы), а другие типы проявляются только нарушениями слуха (несиндромальные формы). Дальнейшие исследования наследственной тугоухости показали наличие огромного количества разновидностей заболевания, что потребовало создания сложной классификации данного состояния в зависимости от его типа, механизма повреждения органа слуха, типа наследования и других факторов. Наследственная тугоухость является достаточно распространенной патологией – по некоторым данным, ее встречаемость составляет 1-2 случая на 1000 новорожденных.

Причины и классификация наследственной тугоухости

Все формы наследственной тугоухости делятся по следующим признакам: сочетанию с другими нарушениями в рамках одной генетической патологии (синдромальные и несиндромальные формы), механизму передачи потомству (аутосомно-доминантные, аутосомно-рецессивные и Х-сцепленные), причине нарушения слуха (кондуктивная, сенсоневральная и смешанная тугоухость). Кроме того, клиницисты разделяют все случаи заболевания по степени ослабления слуха (легкая, умеренная, умеренно-тяжелая и глубокая) и возрасту появления нарушений относительно развития речи (прелингвальная и постлингвальная). Сложность классификации всех форм наследственной тугоухости обусловлена тем, что данное состояние может быть следствием огромного количества различных генетических мутаций, которые, к тому же, способны приводить к неодинаковым фенотипическим проявлениям патологии.

Несиндромальные формы наследственной тугоухости являются наиболее распространенными вариантами данного состояния – в различных популяциях ими обусловлено от 60 до 80% всех случаев врожденных нарушений слуха, передающихся по наследству. Обычно (порядка 75-80%) это аутосомно-рецессивные патологии, обусловленные мутацией гена GJB2, расположенного на 13-й хромосоме. Ген кодирует белок под названием коннектин-26, участвующий в формировании межклеточных связей в нейросенсорном аппарате внутреннего уха. В результате мутации у гомозигот данный протеин не образуется вообще или содержит в себе определенный дефект. Это становится причиной выраженной (чаще всего глубокой) прелингвальной наследственной тугоухости сенсоневрального характера. Другие гены, дающие схожую клиническую картину, пока досконально не изучены.

Доминантные формы несиндромальной наследственной тугоухости практически всегда представляют собой аллельные варианты других генетических заболеваний, которые, помимо прочего, характеризуются нарушениями слуха. Они составляют примерно 20% от всех случаев несиндромальных поражений слухового аппарата. Так, одна из форм доминантной наследственной тугоухости (DFNB18) обусловлена мутацией гена USH1C, расположенного на 11-й хромосоме. Продуктом экспрессии данного гена является белок PZD, принимающий активное участие в формировании волосковых клеток и других компонентов внутреннего уха. Мутация USH1C также ответственна за некоторые варианты синдрома Ушера (тип 1С).

Доминантная несиндромальная наследственная тугоухость типа DFNB12 вызывается дефектом гена CDH23, локализованного на 10-й хромосоме. Он кодирует один из основных белков-кадгеринов, которые участвуют в формировании множества нейроструктур и органов чувств, поэтому мутации CDH23 проявляются не только нарушениями слуха, но и синдромом Ушера 1D, пигментной ретинопатией и другими подобными состояниями. Аналогично аллельными заболеваниями являются доминантная наследственная тугоухость DFNB4 и синдром Пендреда, обусловленные мутацией гена SLC26A4, расположенного на 7-й хромосоме. Продуктом экспрессии данного гена является один из трансмембранных анионных каналов под названием пендрин, наиболее часто встречающийся в органе слуха, щитовидной железе и некоторых других органах. Большинство доминантных форм наследственной тугоухости развиваются уже после формирования речи у ребенка.

Намного более редкими (порядка 1-3% от всех случаев) являются формы наследственной тугоухости с Х-сцепленным механизмом наследования. Наиболее распространенным вариантом такой патологии выступают мутации гена POU3F4, который кодирует важный фактор транскрипции, необходимый для экспрессии других протеинов (досконально не изученных), участвующих в формировании органов слуха. Нарушение функционирования этого органа чувств в данном случае имеет кондуктивный характер и обусловлено аномальным циркулированием перилимфы. Приводить к Х-сцепленной наследственной тугоухости могут и мутации гена PRPS1, который кодирует последовательность одного из ферментов (фосфорибозилпирофосфат синтетазу-1) – патогенез развития нарушений слуха при этом пока остается неясным. Самой редкой описанной формой наследственной тугоухости становятся мутации гена MTRNR1, который локализован не в ядре клетки, а в митохондриальной ДНК – по этой причине заболевание передается только по женской линии или от матери детям.

Симптомы наследственной тугоухости

Главным проявлением наследственной тугоухости, как можно понять из названия патологии, является снижение слуха различной выраженности и характера. Симптомы заболевания нередко появляются в раннем детстве (прелингвальное развитие), при этом в конечном итоге может страдать развитие речи – наблюдается прямая корреляция между степенью снижения слуха и задержкой или недоразвитием речевого аппарата. Столь раннее возникновение наследственной тугоухости может указывать на аутосомно-рецессивный характер данной патологии. Постепенное постлингвальное снижение слуха (после 6-8 лет) чаще всего имеет аутосомно-доминантный характер наследования. При проведении аудиографии можно определить степень наследственной тугоухости, а также ее частотность (звуки какой именно частоты слабее всего воспринимает больной). В отдельных случаях ослабление слуха может происходить во взрослом возрасте.

Помимо собственно снижения слуха различные формы наследственной тугоухости могут проявляться и другими симптомами. Наиболее частым из них является дисфункция вестибулярного аппарата, обусловленная анатомической и функциональной близостью органов слуха и равновесия. Кроме того, могут наблюдаться признаки других генетических и врожденных пороков: нарушения со стороны щитовидной железы, кожных покровов (гиперкератозы, псориаз), мочевыделительной системы, органов зрения. Это наиболее характерно для синдромальных форм наследственной тугоухости: болезни Ваарденбурга, болезни Стиклера, болезни Ушера, болезни Пендреда и ряда других. Всего описано более 400 генетических патологий, которые могут проявляться синдромальной наследственной тугоухостью.

Диагностика и лечение наследственной тугоухости

Для определения наследственной тугоухости используют традиционные отоларингологические методики: аудиометрию, осмотр слуховых ходов, ответ слухового отдела ствола мозга (так называемая BAYER-методика), вызванную отоакустическую эмиссию. Поскольку в большинстве случаев данная патология определяется в детском возрасте, аудиометрия нередко производится в игровой форме. При наследственной тугоухости разных типов может определяться как нарушение воздушной проводимости звуковых колебаний (особенно при кондуктивных механизмах развития заболевания), так и сочетанное снижение костной и воздушной проводимости. Определенную роль в диагностике патологии могут играть аномалии развития органов слуха – например, широкий водоворот преддверия при несиндромальной наследственной тугоухости 4-го типа (DFNB4) или синдроме Пендреда.

Читать еще:  Бактерии на кухонном полотенце: насколько они опасны

Снижение слуха может отмечаться как в отношении определенных звуковых частот, так и в широком диапазоне колебаний. Выраженность нарушений также довольно сильно варьируется при различных формах наследственной тугоухости. При сенсоневральном механизме поражения будет отмечаться уменьшение активности импульсов в слуховом нерве, что определяется при проведении электрофизиологических исследований. Задержка речевого развития обнаруживается при прелингвальных формах наследственной тугоухости. Для ряда типов заболевания (например, обусловленных мутациями генов GJB2, SLC26A4, POU3F4) в качестве диагностики используют методы современной генетики – секвенирование последовательности генов для выявления мутаций.

Лечение наследственной тугоухости, как правило, сводится к подбору слуховых аппаратов различного типа, которые следует начать использовать как можно ранее для предупреждения патологии развития речи. В некоторых случаях при изолированных кондуктивных поражениях органов слуха может быть проведена хирургическая коррекция, однако ее результаты неоднозначны. Большинство форм наследственной тугоухости редко прогрессируют до абсолютной глухоты, поэтому пожизненное применение слуховых аппаратов обеспечивает приемлемое для больного качество жизни.

Прогноз и профилактика наследственной тугоухости

Прогноз наследственной тугоухости относительно выздоровления неблагоприятный – в большинстве случаев снижение слуха сохраняется на протяжении всей жизни. Крайне медленное прогрессирование симптомов или даже отсутствие прогрессирования позволяет использовать слуховые аппараты. В тех случаях, когда у ребенка была поздно выявлена прелингвальная тугоухость, может потребоваться коррекция дефектов речи у логопеда. Для ряда синдромальных форм наследственной тугоухости у детей прогноз во многом зависит от сопутствующих нарушений и пороков развития. Для профилактики этого состояния используют методы генетической пренатальной диагностики, а также выявление носительства дефектных генов (при рецессивных и Х-сцепленных типах заболевания) с последующим медико-генетическим консультированием родителей перед зачатием.

Найден генетический путь лечения возрастной тугоухости

Время чтения: 5 минут

Возрастное снижение слуха считается фактически нормой. Врачи лишь разводят руками: «А что вы хотели в ваши-то годы?» Тем удивительнее факт, что лягушки и птицы не страдают этой проблемой. А все потому, что они в течение всей жизни могут восстанавливать утраченные сенсорные волосковые клетки, которые являются рецепторами слуховой системы у всех позвоночных и, попросту говоря, отвечают за то, чтобы мы хорошо слышали.

Исследователи из Рочестерского университета и Гарвардской медицинской школы предположили, что можно запустить похожие процессы и у людей. Но сначала нужно было понять, почему это работает у птиц, а у людей — не работает.

Лабораторные исследования выявили семейство рецепторов, именуемое эпидермальным фактором роста (EGF), ответственных за активацию опорных клеток в слуховых органах птиц. При срабатывании EGF опорные клетки размножаются и способствуют генерации новых сенсорных волосковых клеток в птичьих ушах.

А вот у мышей (и людей) все иначе. В мышиных улитках уха тоже экспрессируются рецепторы EGF, но к регенерации сенсорных волосковых клеток это не приводит. Ученые предположили, что во время эволюции млекопитающих произошли изменения в экспрессии внутриклеточных регуляторов передачи сигналов рецептора EGF и произошла какая-то блокировка.

Ученые попытались произвести «разблокировку». Для начала они сконцентрировались на особом рецепторе под названием ERBB2, который находится в кохлеарных опорных клетках. Исследователи испробовали целый ряд методов активации сигнального пути EGF. Один набор экспериментов включал использование вируса для нацеливания на рецепторы кохлеарных опорных клеток ERBB2. В других опытах мыши были генетически модифицированы так, чтобы иметь сверхэкспрессию ERBB2. Эксперименты третьего рода состояли в тестировании препаратов, первоначально разработанных для стимулирования активности тех стволовых клеток в глазах и поджелудочной железе, которые, активируют сигнальный путь ERBB2.

Исследователи обнаружили, что все способы вызвали серию каскадных клеточных реакций. Опорные кохлеарные клетки начали размножаться и запустили процесс активации соседних стволовых клеток, чтобы те наконец-то стали новыми сенсорными волосковыми клетками. Этот процесс к тому же усилил интеграцию волосковых клеток с нервными клетками.

Таким образом, ученые добились того, чтобы у мыши началась регенерация сенсорных волосковых клеток не хуже, чем у птиц и лягушек. Но ведь восстановление этих клеток означает восстановление слуха. По крайней мере, так должно быть. Поэтому в следующих экспериментах ученые собираются выяснить, могут ли они вылечить тугоухих мышей.

Найден генетический путь лечения возрастной тугоухости

Найден генетический путь лечения возрастной тугоухости

Возрастное снижение слуха считается фактически нормой. Врачи лишь разводят руками: «А что вы хотели в ваши-то годы?» Тем удивительнее факт, что лягушки и птицы не страдают этой проблемой. А все потому, что они в течение всей жизни могут восстанавливать утраченные сенсорные волосковые клетки, которые являются рецепторами слуховой системы у всех позвоночных и, попросту говоря, отвечают за то, чтобы мы хорошо слышали.

Исследователи из Рочестерского университета и Гарвардской медицинской школы предположили, что можно запустить похожие процессы и у людей. Но сначала нужно было понять, почему это работает у птиц, а у людей — не работает.

Лабораторные исследования выявили семейство рецепторов, именуемое эпидермальным фактором роста (EGF), ответственных за активацию опорных клеток в слуховых органах птиц. При срабатывании EGF опорные клетки размножаются и способствуют генерации новых сенсорных волосковых клеток в птичьих ушах.

А вот у мышей (и людей) все иначе. В мышиных улитках уха тоже экспрессируются рецепторы EGF, но к регенерации сенсорных волосковых клеток это не приводит. Ученые предположили, что во время эволюции млекопитающих произошли изменения в экспрессии внутриклеточных регуляторов передачи сигналов рецептора EGF и произошла какая-то блокировка.

Ученые попытались произвести «разблокировку». Для начала они сконцентрировались на особом рецепторе под названием ERBB2, который находится в кохлеарных опорных клетках. Исследователи испробовали целый ряд методов активации сигнального пути EGF. Один набор экспериментов включал использование вируса для нацеливания на рецепторы кохлеарных опорных клеток ERBB2. В других опытах мыши были генетически модифицированы так, чтобы иметь сверхэкспрессию ERBB2. Эксперименты третьего рода состояли в тестировании препаратов, первоначально разработанных для стимулирования активности тех стволовых клеток в глазах и поджелудочной железе, которые, активируют сигнальный путь ERBB2.

Исследователи обнаружили, что все способы вызвали серию каскадных клеточных реакций. Опорные кохлеарные клетки начали размножаться и запустили процесс активации соседних стволовых клеток, чтобы те наконец-то стали новыми сенсорными волосковыми клетками. Этот процесс к тому же усилил интеграцию волосковых клеток с нервными клетками.

Читать еще:  Столичные врачи удалили опухоль весом в 20 кг

Таким образом, ученые добились того, чтобы у мыши началась регенерация сенсорных волосковых клеток не хуже, чем у птиц и лягушек. Но ведь восстановление этих клеток означает восстановление слуха. По крайней мере, так должно быть. Поэтому в следующих экспериментах ученые собираются выяснить, могут ли они вылечить тугоухих мышей.

Методы лечения

Сегодня до 4% населения планеты испытывает те или иные проблемы со слухом. Новые технологии способны улучшить качество жизни таких людей.

Технологии с каждым годом развиваются интенсивнее, появляются новые решения в самых различных сферах деятельности человека — от бытового уровня до производственного. Медицина в данном случае не является исключением, при этом она выступает существенным драйвером инноваций: разрабатываются и внедряются новые препараты, новое медицинское оборудование и приборы, новые методы лечения самых различных заболеваний и патологий.

Профессор Санкт-Петербургского научно-исследовательского института уха, горла, носа и речи (НИИ ЛОР) и кафедры сурдопедагогики Российского педагогического государственного университета им. Герцена Инна Королева говорит, что в общей сложности, 2-4% населения земного шара имеют проблемы, связанные со снижением слуха. Так, в мире примерно 5 млн глухих людей, около 350 млн человек имеют снижение слуха умеренной и тяжелой степени — второй, третьей и четвертой, а 750 млн человек — снижение слуха первой степени. При этом из 360 млн людей со значительным снижением слуха 32 млн — это дети до 15 лет.

Нарушение слуха, подчеркивает Инна Королева, прежде всего — возрастное заболевание. «Снижение слуха встречается у 1% людей в возрасте 20 лет. С возрастом число нарушений слуха удваивается каждые десять лет»,— говорит она.

Точной статистики по числу жителей России, имеющих проблемы со слухом, нет. Однако известно, что в РФ на тысячу новорожденных рождается два-три глухих ребенка, а в палатах патологии новорожденных фиксируется по 30-40 детей с нарушением слуха. У двух-трех детей (из тысячи.— SR) нарушение слуха развивается в течение первого-второго годов жизни.

Всего в России около 200 тыс. глухих и слабослышащих детей. «Большая часть нарушений слуха у детей является врожденной или развивается в раннем возрасте. Из них у 30% — наследственная тугоухость, то есть у них есть близкие родственники с тугоухостью, у 20% — генетические мутации. Остальные нарушения связаны с патологиями беременности и родов»,— указывает Инна Королева

Одним из методов восстановления слуха может быть использование стволовых клеток, делится госпожа Королева. В частности, в рамках такой технологии используются стволовые клетки пуповинной крови, которые вводятся в улитку. Десятки центров в различных странах занимаются подобными исследованиями. Кроме того, в мире проводятся и соответствующие межцентровые исследования.

Сейчас технология находится на стадии экспериментальных исследований на животных и клинических испытаний на добровольцах в нескольких центрах в США, Южной Корее, Китае и других странах. Технология может использоваться как для глухих пациентов, так и для пациентов с остаточным слухом. Пока достигается лишь ограниченное восстановление функции. «Не до конца решены также проблемы выращивания необходимого количества волосковых клеток из стволовых, а также имплантирования этих клеток в срединную лестницу улитки, где и должны располагаться волосковые клетки для стимуляции окончаний слухового нерва. Кроме того, среди возможных ограничений применения такой технологии на текущем этапе ее развития активно обсуждается вероятность повышения риска развития онкологических заболеваний»,— отмечает собеседник SR.

Суть технологии заключается в том, что с помощью тканей, полученных от новорожденных, ученые могут запустить процесс саморегенерации волосковых клеток, которые располагаются в улитке внутреннего уха. Эти клетки представляют собой часть слухового механизма, отвечающую за преобразование механических колебаний мембраны в электрические импульсы. Изначально в экспериментах использовались ингибиторы фермента гамма-секретазы, которые ранее применялись в лечении болезни Альцгеймера. Эти ферменты и превращали опорные клетки улитки, остающиеся неповрежденными при потере слуха, в волосковые клетки.

Эксперименты проводились, в том числе, на морских свинках и на мышах. До операции зверьки были лишены способности воспринимать звук, но после введения стволовых клеток во внутреннее ухо, у них улучшалась реакция на различные звуковые колебания: грызуны смогли реагировать на звуки человеческого голоса и на звуки двигающихся предметов.

Один из последних экспериментов в данной области провели ученые из Массачусетского технологического университета (США) и бостонского госпиталя Brighamand Women’s Hospital (США), которые объявили, что в ходе долгосрочного исследования им удалось добиться восстановления волосковых клеток внутреннего уха. Они отмечали, что у человека в среднем бывает от 15 до 20 тыс. таких клеток, а в процессе старения организма, а также под воздействием повреждающих факторов клетки отмирают, что приводит к потере слуха.

В ходе исследования ученым удалось показать, что предшественники волосковых клеток — стволовые клетки, экспрессирующие белок LGR5 (процесс, в ходе которого наследственная информация от гена преобразуется в функциональный продукт, то есть РНК или белок.— SR), могут быть целенаправленно превращены в волосковые клетки под воздействием ингибитора фермента GSK-3. Изначально эксперимент был проведен in vitro. Стволовые клетки, положительные по LGR5-белку, выделенные у мышей, были перенесены на питательную среду в чашках Петри, на них ученые воздействовали активаторами размножения, что позволило резко увеличить популяцию этих стволовых клеток, а затем подвергли действию второго лекарственного коктейля, содержащего активаторы направленного пути развития. В результате была получена большая колония волосковых клеток.

В дальнейшем ученые повторили эксперимент на живых мышах. Первоначально выращенная на питательной среде колония LGR5-положительных стволовых клеток была инъецирована во внутреннее ухо мышей, где подверглась воздействию естественного комплекса активаторов превращения во взрослые волосковые клетки. Американские исследователи полагают, что операция по размножению стволовых клеток пациента, их активации и последующему введению во внутреннее ухо может привести к восстановлению числа волосковых клеток и возвращению слуха у почти безнадежных больных.

Вице-президент компании Med-El Алексей Ильченко в контексте перспектив применения такой технологии отмечает, что до внедрения подобных методов в медицинскую практику еще далеко, несмотря на активные исследования и работы. «В лабораторных условиях получены положительные результаты, удается вырастить волосковые клетки из стволовых, проводятся эксперименты на животных, однако не решены проблемы трансплантации стволовых клеток. Также необходимо исключить возможность превращения этих клеток в нежелательные образования, особенно в раковые клетки»,— говорит он.

Предотвратить глухоту в перспективе смогут и различные методы генной инженерии, считает Инна Королева. Это биотехнология, при которой проводится перестройка генотипа — включение и выключение отдельных генов, замена мутированного гена, приводящего к какой-то патологии, на нормально функционирующий ген.

«Идентифицировано более 50 генов, ответственных за состояние слуховой функции. Мутации в этих генах вызывают различные расстройства слуха. Выявлено около 400 разных мутаций. Наиболее часто тугоухость возникает при мутации в трех генах»,— указывает профессор.

В рамках технологии потенциально возможно внедрение гена во внутреннее ухо пациента на стадии развития заболевания и предотвращение дальнейшего его развития, если причина патологии связана с нарушением работы клеток внутреннего уха.

Читать еще:  В самое сердце: 10 эффективных средств для ухода за кожей вокруг глаз

Также возможно предотвращение рождения ребенка с патологией посредством замены патологического гена на нормально функционирующий в половой клетке и при последующем экстракорпоральном оплодотворении. Теоретически, при замене на стадии половых клеток или ребенку в очень раннем возрасте никакой реабилитации не потребуется, добавляет Инна Королева: «Ребенок должен развиваться как нормально слышащий».

Различные наследственные формы потери слуха включают синдром Ушера типа 1 (USH1), особенно тяжелую клиническую форму глухоты и слепоты и, в частности, генетическую форму USH1G. Такой тип встречается с частотой 3-6 случаев на 100 тыс. человек, сопровождается врожденной глубокой тугоухостью или полной глухотой и нарушением вестибулярных функций. Синдром USH1G обусловлен мутациями в гене, кодирующем белок Scaffold, который необходим для сцепления пучка волос внутренних клеток волоса уха.

В настоящее время пациенты с потерей слуха и вестибулярной дисфункцией используют различные слуховые аппараты и реабилитационную терапию, но результаты варьируются. Одной из возможных альтернатив для лечения таких наследственных дефектов внутреннего уха является генная терапия. Этот подход влечет за собой передачу здоровой — немутантной — копии дефектного гена для восстановления экспрессии пропавшего белка. До сих пор попытки генной терапии приводили лишь к частичным улучшениям слуха на мышиных моделях конкретных форм глухоты человека, которые не включали серьезные аномалии в структуре волосковых клеток.

Группе ученых из различных университетов Франции удалось добиться восстановления слуха и вестибулярных функций у мышей с синдромом USH1G с использованием генной терапии. С одной локальной инъекцией гена USH1G сразу после рождения ученые обнаружили восстановление структуры и механосенсорной функции волосковых клеток внутреннего уха, глубоко поврежденных до рождения. То есть, пришли к выводу исследователи, внутренние дефекты уха из-за крупных морфогенетических аномалий волосковых клеток могут быть обратимы даже после рождения с долговременной эффективностью путем генной терапии.

Ученые внедрили ген USH1G во внутреннее ухо с использованием безобидного вируса, который позволил им конкретно нацелиться на волосковые клетки. Выражение терапевтического гена было обнаружено через 48 часов после инъекции. Команда исследователей продемонстрировала, что одна инъекция для восстановления производства и локализации недостающего белка в волосковых клетках успешно улучшает функции слуха и баланса у молодых мышей. Эти данные свидетельствуют о том, что терапевтический белок мог нормально взаимодействовать с его связывающими партнерами среди молекулярного комплекса USH1. Это требуется для того, чтобы механоэлектрический аппарат трансдукции (процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом.— SR) волосков функционировал правильно.

Таким образом, ученые продемонстрировали, что можно частично скорректировать конкретную форму наследственной потери слуха, сопровождаемую проблемами вестибулярного аппарата, используя локальную генную терапию, выполненную после эмбриогенеза уха, на который в первую очередь влияет мутация, ответственная за расстройство.

Тем не менее, если обсуждать вопрос внедрения методов лечения глухоты стволовыми клетками и с помощью генной инженерии, то специалисты считают, что потребуется не менее десяти лет, чтобы подобные технологии стали реальным методом восстановления слуха, подчеркивает Инна Королева.

«Сегодня важно осознавать, что при выборе метода восстановления слуха нельзя терять время и ждать, пока станут доступны технологии будущего. Ведь для развития ребенка необходимо как можно раньше обеспечить ему возможность слышать, так как существует критический период для развития слуховых и речевых центров мозга, и эту возможность глухому ребенку обеспечивают кохлеарные и стволомозговые имплантаты»,— добавляет эксперт.

Фармакология и имплантируемая система

Среди других технологий улучшения слуха, отмечает Инна Королева,— разработка метода введения лекарственных препаратов непосредственно в улитку. Для этого используется специальная модификация кохлеарного имплантата, с помощью которой вводятся противовоспалительные препараты и нейротропные вещества.

В частности, Med-El в рамках этого направления сотрудничает со специализированными фармацевтическими компаниями. «Нерв можно частично восстановить или стимулировать рост нервных окончаний, но не так просто доставить лекарство к нему. Сейчас уже существуют фармацевтические препараты, которые способствуют росту периферийной части нерва»,— говорит Алексей Ильченко.

По его словам, во время кохлеарной имплантации происходит внедрение электродов во внутреннее ухо, и получается, что он находится совсем рядом с нервными окончаниями. «И раз мы все равно туда вторгаемся, появилась идея ввести еще какое-то лекарство, которое будет способствовать прорастанию нервных окончаний. Это логично и лежит на поверхности, но необходимо найти технические решения, сделать все максимально безопасно»,— подчеркивает он.

Среди других разработок Med-El — полностью имплантируемая кохлеарная система без наружной части. Она предусматривает установку имплантированного источника питания, который будет подзаряжаться посредством беспроводного устройства, и пациенту не нужно будет использовать наружные аудиопроцессоры. Технические решения для такой системы существуют, но нужно их доработать, провести апробацию, довести до серийного продукта и пройти регистрацию.

Среди задач, которые сейчас решают разработчики,— необходимость замены аккумулятора через определенный срок, так как со временем его емкость падает. Для этого требуется повторная операция, которая должна быть минимально инвазивной.

Инна Королева указывает на еще один момент, который требует решения: микрофон системы также находится под кожей, а значит, звуки и речь, улавливаемые им и преобразуемые впоследствии процессором кохлеарного имплантата, искажаются при передаче через кожу. «Кроме того, микрофон в этом случае улавливает и звуковые колебания, связанные с соматическими процессами — жеванием, глотанием, дыханием, движением крови по сосудам. Они маскируют речь и другие полезные звуковые сигналы»,— говорит эксперт.

VR-моделирование и телемедицина

Технология кохлеарной и стволомозговой имплантации сама диктует принципиально новый подход к реабилитации глухого ребенка — целенаправленное формирование процессов слухового анализа и создание условий для их спонтанного развития, чтобы в дальнейшем они стали инструментом для овладения речью посредством общения с окружающими взрослыми, подчеркивает профессор. Это серьезно отличается от традиционных подходов развития речи у слабослышащих и глухих, опирающихся на зрение (чтение, пальцевая азбука, жесты, письменная речь) и тактильные ощущения.

При слухоречевой реабилитации пациентов с кохлеарными имплантатами, в том числе, могут использоваться и виртуальные технологии. В частности, в компьютерном тренажерном комплексе для развития слухоречевого восприятия у пациентов с имплантатами, разработанном в НИИ ЛОР совместно с Институтом физиологии им. Павлова РАН, для тренировки способности локализовать источник звука используется виртуальное моделирование перемещения источника звука и его различной локализации, моделирование сложных акустических сцен, синтез речевых сигналов с заданными характеристиками. Это позволяет структурированно сформировать процессы мозгового анализа звуковой информации у пациента с кохлеарным имплантатом в короткие сроки.

Кроме того, в мире существуют специализированные проекты для слабослышащих людей, связанные с телемедициной и онлайн-сервисами. «Особенно активно они развиваются в странах с большими территориями — в Австралии, Канаде, США, Китае, что связано с удаленностью проживания пациента от центров реабилитации и специалистов»,— уточняет госпожа Королева.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector