0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Восстановление мозга при генетических болезнях: первые успехи

Восстановление мозга при генетических болезнях: первые успехи

Восстановление мозга при генетических болезнях: первые успехи

Безопасная трансплантация здоровых клеток в мозг могла бы помочь детям с генетическими болезнями, при которых страдает миелиновая оболочка нейронов. Среди этих заболеваний болезнь Пелицеуса-Мерцбахера, когда дети не могут сидеть и ходить, испытывают непроизвольные мышечные спазмы и частичный паралич рук и ног: все это обусловлено мутацией в генах, образующих миелин.

«Поскольку эти состояния инициируются мутацией, вызывающей дисфункцию в одном типе клеток, они представляют собой хорошую мишень для клеточной терапии, подразумевающей пересадку здоровых клеток», — говорит Петр Вальчек, доктор медицинских наук, доцент кафедры радиологии в Медицинской школе Университета Джона Хопкинса.

Однако препятствием к такому лечению является является иммунная система млекопитающих. Иммунная система работает на уничтожение, быстро идентифицируя чужеродные ткани, в том числе трансплантированные клетки. В принципе, иммунодепрессанты противостоят этому процессу, но делают пациентов уязвимыми для инфекций. Кроме того, на иммунодепрессантах придется сидеть всю жизнь.

В попытке остановить ненужный иммунный ответ без побочных эффектов, команда ученых из Университета Джона Хопкинса искала способы манипулировать Т-клетками. В частности, Вальчек и его команда сосредоточились на серии так называемых «ко-стимулирующих сигналов», которые контролируют активность Т-клеток.

«Эти сигналы используются для того, чтобы клетки иммунной системы не нападали на собственные здоровые ткани организма», — говорит Джеральд Брандачер, доктор медицинских наук, сотрудник Университета Джона Хопкинса и соавтор исследования.

Идея заключалась в том, чтобы использовать естественные склонности ко-стимулирующих сигналов для тренировки иммунной системы, чтобы в конечном итоге иммунитет признал трансплантированные клетки «своими» навсегда.

С этой целью ученые использовали два антитела, CTLA4-Ig и анти-CD154, которые не дают Т-клеткам начинать атаку при столкновении с чужеродными частицами путем связывания с поверхностью Т-клеток, по существу блокируя сигнал «фас». Эта комбинация ранее успешно использовалась для блокирования отторжения трансплантированных органов у животных, но еще не была протестирована в отношении трансплантации клеток, восстанавливающих миелиновую оболочку нейронов.

В одном из ключевых экспериментов Вальчек и его команда вводили в мышиный мозг защитные глиальные клетки, производящие миелин. Эти клетки были генетически спроектированы так, чтобы светиться, это обеспечило удобство наблюдения за ними.

Мыши были поделены на две группы: мыши, генетически лишенные глиальных клеток, и обычные мыши. Кроме глиальных клеток половине первой группы в течение 6 дней вводили антитела, блокирующие иммунный ответ.

Каждый день исследователи использовали специализированную камеру, которая искала светящиеся клетки и делала снимки мозга мыши, определяя относительное присутствие или отсутствие трансплантированных глиальных клеток. Клетки, трансплантированные контрольным мышам, которые не получали лечение антителами, сразу же начали отмирать, и их свет погас к 21 дню.

Мыши, получившие лечение антителами, поддерживали значительные уровни трансплантированных глиальных клеток в течение более 203 дней, показывая, что трансплантанты не уничтожались Т-клетками даже после прекращения ввода антител.

«Мы интерпретируем этот результат как успех в избирательной блокировке Т-клеток иммунной системы против уничтожения трансплантированных клеток», — говорит Шен Ли, доктор медицинских наук, ведущий автор исследования.

Следующим шагом было выяснить, прижились ли трансплантированные глиальные клетки достаточно хорошо, чтобы делать то, что глиальные клетки обычно делают в мозге (создают миелиновую оболочку). С помощью МРТ исследователи увидели, что клетки обработанных животных действительно заняли свое место в мозге, а дальнейшие результаты подтвердили, что трансплантированные клетки приняли на себя необходимую функцию защиты нейронов.

Восстановление мозга при генетических болезнях: первые успехи

Понимание генетических болезней на молекулярном уровне лежит в основе рациональной терапии. В течение будущих десятилетий знание последовательности генома человека и каталог генов вместе с возможностями молекулярной биологии, белкового проектирования и биоинженерии будут иметь огромное влияние на лечение генетических и других болезней.

Цель лечения генетической болезни — устранить или улучшить симптомы заболевания, причем не только у пациента, но также и в его семье. Кроме того, семью следует информировать о риске развития болезни у других ее членов. Генетическое консультирование — основной компонент медицинской помощи при наследственных заболеваниях.

Для моногенных заболеваний, вызванных мутациями с потерей функции гена, лечение направлено на замену дефектного белка, улучшение его функции или минимизацию последствий недостаточности. Замену дефектного белка можно достичь его введением, пересадкой органа или клеток, или генотерапией.

В принципе, генотерапия — предпочтительный способ лечения некоторых, а возможно, большинства моногенных болезней, как только она станет безопасной и эффективной. Тем не менее даже если копии нормального гена могут быть переданы пациенту, семья нуждается в генетическом консультировании, диагностике носительства и пренатальной диагностике, во многих случаях в нескольких поколениях.

Эра молекулярной медицины с ее замечательными достижениями за последние 5 лет обещает прекрасный и полный эффект при терапии генетических болезней. Эти достижения включают первые случаи лечения наследственного заболевания (тяжелого комбинированного иммунодефицита) с помощью генотерапии; способность манипулировать экспрессией генов с помощью совершенно безопасных аналогов нуклеотидов (открытие, имеющие большое значение для лечения большинства гемоглобинопатии, наиболее частых моногенных болезней в мире); и способность предотвращать заместительной ферментотерапией клинические проявления прежде летальных заболеваний, включая лизосомные болезни накопления.

Лечение многофакторных генетических болезней

Для большинства многофакторных болезней, обычно обнаруживаемых в юности или во взрослой жизни, этиологические факторы окружающей среды и генетическая компонента понятны недостаточно. С признанием вклада окружающей среды появляется возможность для эффективного вмешательства, поскольку влияние внешних факторов часто может быть изменено.

Читать еще:  Солевая повязка при ушибах

На самом деле изменения факторов окружающей среды, например лекарства, образ жизни или изменение диеты, могут иметь большее действие при лечении многофакторных, чем моногенных, болезней. Например, табачный дым — фактор окружающей среды, которого должны строго избегать все пациенты с ВМД или эмфиземой.

Табачный дым окисляет остаток метионина в активном сайте a1-антитрипсина, в 2000 раз уменьшая его способность тормозить эластазу, тем самым буквально создавая фенокопию наследуемой недостаточности а1-антитрипсина.

Хотя многофакторные болезни хорошо поддаются некоторым формам терапевтического или хирургического лечения, такой подход не «генетический» по своей сути. Поразительный пример многофакторного заболевания, чрезвычайно успешно поддающегося стандартной терапии, — сахарный диабет I типа, когда интенсивная заместительная инсулинотерапия существенно улучшает исходы.

Также весьма успешным может быть хирургическое лечение многофакторных заболеваний. Например, три структурных аномалии (врожденные пороки сердца, расщелины губы и нёба, стеноз привратника) поражают почти 1,5% всех живорожденных младенцев, это составляет приблизительно 30% всех новорожденных с генетической патологией.

Примерно у половины из них болезнь излечивается единственной операцией (фенотипическая модификация); следовательно, излечение возможно, по крайней мере, у 10-15% новорожденных с генетическими заболеваниями. По общему признанию, лечение других наследственных болезней не настолько успешно, но часто улучшает качество жизни.

Лечение моногенных генетических болезней

Несмотря на большие перспективы, в целом лечение моногенных болезней пока недостаточно эффективно. Анализ 372 менделирующих заболеваний показал, что существующая терапия полностью эффективна в 12% случаев, частично эффективна в 54% и не дает никаких преимуществ в 34%. Обнадеживающая тенденция, что лечение более вероятно окажется успешным, если известен биохимический дефект.

Например, в одном исследовании лечение повышало продолжительность жизни только при 15% изученных моногенных болезней, но в подгруппе из 65 врожденных заболеваний с известной причиной продолжительность жизни существенно увеличилась на 32%; аналогичные изменения наблюдали для других фенотипических признаков, включая рост, интеллект и социальную адаптацию. Таким образом, решающее воздействие на клинические результаты оказывают исследования, объясняющие генетические и биохимические основы наследственных болезней.
Текущее неудовлетворительное состояние лечения генетических болезней — следствие многочисленных факторов, включая следующие.

• Ген не идентифицирован или непонятен патогенез болезни. Мутантный локус неизвестен при более 50% генетических болезней. Даже когда ген известен, тем не менее, понимание патофизиологического механизма часто неадекватно. При ФКУ, например, несмотря на годы анализа, все еще плохо понятны механизмы того, как повышение фенилаланина нарушает развитие мозга и его функции.

• Фетальные повреждения. Некоторые мутации действуют в начале развития или вызывают необратимые патологические изменения прежде, чем они могут быть диагностированы. Эти проблемы иногда можно предвидеть, если есть соответствующий семейный анамнез наследственного заболевания или идентифицированы семейные пары из группы риска при скрининге. В таких случаях иногда возможно пренатальное лечение, как терапевтическое, так и хирургическое.

• Тяжелые фенотипы хуже поддаются лечению. Первые распознанные случаи болезни обычно наиболее тяжелые, и они часто плохо поддаются терапии. Одна из причин — у значительно пораженных больных мутация часто приводит к полному отсутствию белка или изменению его без какой-либо остаточной активности. Если эффект мутации менее разрушительный, мутантный белок может сохранять некоторую остаточную функцию.

В этом случае можно попытаться увеличить его функциональную полноценность, чтобы получить терапевтический эффект.

Мозг склонен к восстановлению и самоисцелению

Изучающие головной мозг человека ученые за последние несколько лет обнаружили определенное количество неожиданных аспектов, которые обуславливают влияние мозга на общее состояние здоровья нашего организма.

Однако и некоторые аспекты нашего поведения влияют на наш мозг. Кроме того, согласно современной точке зрения, которая сформировалась относительно недавно, мозг человека не прекращает свое формирование к подростковому возрасту.

Ранее считалось, что мозг, начиная с довольно раннего возраста (подростковый период), подвергается неумолимому процессу старения, который достигает своего пика в пожилом возрасте. Однако сейчас известно, что мозг человека имеет способность изменяться, восстанавливаться и даже излечиваться, причем эта способность поистине безгранична! Получается, что не столько возраст влияет на наш мозг, а то, как мы пользуемся мозгом в течение жизни.

Действительно, определенная активность, требующая усиленной работы головного мозга, способна заново «перезагрузить» так называемое базальное ядро (комплекс подкорковых нейронов белового вещества), которое, в свою очередь, запускает так называемый механизм нейропластичности мозга. Иными словами, нейропластичность – это возможность контролировать состояние головного мозга, поддерживая его работоспособность.

В то время как функциональность мозга несколько ухудшается естественным образом по мере старения организма (но не настолько критично, как считалось ранее), определенные стратегические подходы и методики позволяют создавать новые нейронные проводящие пути и даже улучшать работу старых путей, причем, на протяжении всей жизни человека. И что еще более удивительно, так это то, что подобные усилия по «перезагрузке» мозга оказывают долговременный положительный эффект на общее состояние здоровья. Каким же образом это происходит? Наши мысли способны влиять на наши гены!

Мы склонны думать, что наше так называемое генетическое наследие, то есть, своеобразный генетический багаж нашего организма, это материя неизменная. По нашему мнению, родители передали нам весь тот генетический материал, которые сами когда-то унаследовали – гены облысения, роста, веса, заболеваний и так далее – и теперь мы обходимся лишь тем, что получили. Но на самом деле, наши гены открыты для влияния в течение всей нашей жизни, причем, на них влияют не только наши действия, но и наши мысли, чувства, вера.

Читать еще:  Вакцина БЦЖ лечит диабет 1 типа

Вы должно быть слышали, что на генетический материал можно повлиять посредством изменения рациона питания, образа жизни, физической активности и так далее. Так вот сейчас вполне серьезно изучается возможность такого же эпигенетического эффекта, вызванного мыслями, чувствами, верой.

Как показывают уже многочисленные исследования, химические вещества, на которые влияет наша умственная активность, способны вступать во взаимодействие с нашим генетическим материалом, вызывая мощный эффект. На многие процессы в нашем организме можно повлиять таким же образом, как и при изменении режима питания, образа жизни, среды обитания. Наши мысли способны буквально выключать и включать активность определенных генов.

О чем говорят исследования?

Доктор наук и исследователь Доусон Черч (Dawson Church) рассказал о взаимодействии, которое оказывают мысли и вера пациента на экспрессию связанных с болезнью и исцелением генов.

«Наше тело читает в нашем мозгу, — говорит Черч. – Наукой установлено, что мы можем иметь лишь определенный фиксированный набор генов в наших хромосомах. Однако какие из этих генов влияют на наше субъективное восприятие и на течение различных процессов, имеет большое значение».

В результате одного из исследований, проведенного в Университете Огайо (Ohio University), был наглядно продемонстрирован эффект влияния умственного напряжения на процесс излечения. Учёные провели его среди семейных пар: каждому участнику опыта на коже оставляли небольшое повреждение, приводящее к появлению маленького волдыря. Затем разным парам предлагалось в течение получаса либо пообщаться на нейтральную тему, либо поспорить на какую-то конкретную тему.

Затем на протяжении нескольких недель ученые определяли уровень трех определенных белков в организме, которые влияют на скорость заживления ран. Оказалось, что у тех спорщиков, которые использовали в своих спорах наиболее язвительные и жесткие замечания, и уровень этих белков и скорость заживления были на 40 процентов ниже, чем у тех, кто общался на нейтральную тему.

Черч объясняет это следующим образом: наше тело посылает сигнал в виде белка, активирующий определенные гены, связанные с заживлением ран. Белки активируют гены, которые, используя стволовые клетки, создают новые клетки кожи для лечения ран.

Однако когда энергия организма истощается тем, что затрачивается на выработку стрессовых веществ, таких как кортизол, адреналин и норадреналин, — сигнал, который поступает к вашим исцеляющим раны генам, значительно слабеет. Процесс восстановления длится намного дольше. В то же время, если организм человека не настраивается на борьбу с какой-то внешней угрозой, его энергетические ресурсы остаются нетронутыми и готовыми для выполнения излечивающих миссий.

Почему это очень важно для нас?

Нет сомнений, что тело практически любого человека с рождения укомплектовано генетическим материалом, необходимым для оптимального функционирования в условиях ежедневных физических нагрузок. Однако наша способность сохранять так называемое умственное равновесие оказывает огромное влияние на возможности нашего тела использовать свои ресурсы. И даже если вы полны агрессивных мыслей, определенная активность помогает настроить ваши нейронные проводящие пути на поддержку менее реакционных действий.

Хронический стресс способен преждевременно состарить наш мозг

«Нас постоянно подстерегают стрессы в нашей среде обитания, — рассказывает Говард Филлит (Howard Fillit), доктор наук, профессор гериатрии в Школе медицины Маунт-Синай, Нью-Йорк, и руководитель фонда, занимающегося поиском новых лекарств от болезни Альцгеймера. – Однако наибольший вред приносит тот умственный стресс, который мы чувствуем внутри себя в ответ на внешний стресс».

Подобное разграничение стрессов указывает на наличие постоянной ответной реакции всего организма в ответ на постоянный внешний стресс. Эта ответная реакция влияет на наш мозг, приводя к нарушению памяти и других аспектов умственной деятельности. Таким образом, стресс является фактором риска, влияющим на развитие болезни Альцгеймера, а также ускоряет ухудшение памяти при старении человека. При этом вы можете даже начать себя чувствовать намного старее, что называется, умственно, чем вы есть на самом деле.

Исследования, проведенные специалистами Калифорнийского университета (University of California) в Сан-Франциско продемонстрировали, что постоянная реакция организма на стресс (и постоянные всплески кортизола) способны приводить к уменьшению гиппокампа – важнейшей части лимбической системы головного мозга, отвечающей как за регулирование последствий стресса, так и за долговременную память. Это также одно из проявлений нейропластичности – но уже негативное.

Как и другие формы релаксации, полное отречение от всяких мыслей не только способны быстро привести в порядок мысли (и, соответственно, биохимический уровень стресса наряду с экспрессией генов), но и даже менять структуру самого мозга!

«Стимулирование областей мозга, которые управляют позитивными эмоциями, способно усилить нейронные связи точно так же, как физические упражнения усиливают мышцы», — произносит Хэнсон один из главных принципов нейропластичности. Однако верно и обратное: «Если вы регулярно думаете о тех вещах, которые мучают вас и сводят с ума, вы увеличиваете чувствительность мозжечковой миндалины, которая в первую очередь несет ответственность за негативные переживания».

Хэнсон объяснил, что таким образом мы делаем наш мозг более восприимчивым, а это приводит к тому, что мы легко расстраиваемся из-за пустяков в будущем.

«Работа мозга в унисон с организмом посредством интерорецепции бережет наше тело от повреждений в момент выполнения физических упражнений, — рассказывает Хэнсон. – А также помогает ощущать приятное и простое чувство того, что в вашем организме все в порядке». Еще один плюс здорового «островка» заключается в том, что вы таким образом улучшаете свои инстинкты, интуицию и эмпатию – умение сопереживать».

Каждый год нашей жизни в пожилом возрасте способен добавлять нам ума

Долгое время считалось, что ближе к среднему возрасту человеческий мозг, некогда молодой и гибкий, начинает постепенно сдавать позиции. Однако недавние исследования продемонстрировали, что в среднем возрасте мозг способен начать проявлять свою пиковую активность. Исследования показывают, что даже несмотря на вредные привычки, именно эти года являются самыми благоприятными для наиболее активной работы мозга. Именно тогда мы принимаем наиболее осознанные решения, оглядываясь на накопленный опыт.

Читать еще:  Хирург Джафаров Эльмар Эльман оглы – записаться к врачу

Ученые, которые изучали человеческий мозг, всегда убеждали нас, что основной причиной старения мозга является утрата нейронов – смерть клеток мозга. Однако сканирование мозга с помощью новых технологий продемонстрировало, что большая часть мозга поддерживает одинаковое количество активных нейронов на протяжении всей жизни. И даже при условии, что некоторые аспекты старения и правда приводят к ухудшению памяти, реакции и так далее, происходит постоянное пополнение «запасов» нейронов. Но за счет чего?

Ученые назвали данный процесс «билатерализацией мозга», при которой происходит одновременное использование как правого, так и левого полушарий мозга. В 1990-х годах в Канаде, в Торонтском университете (University of Toronto), благодаря развитию технологий сканирований мозга, удалось визуализировать и сравнить то, как работает мозг молодых людей и людей среднего возраста при решении следующего задания на внимательность и память:

— необходимо было быстро запомнить имена людей на различных фотографиях, а потом постараться вспомнить, кого как зовут.

Ученые ожидали, что участники исследования средних лет хуже справятся с поставленной задачей, однако результаты экспериментов для обеих возрастных групп были одинаковы. Но удивительным оказалось другое: позитрон-эмиссионная томография продемонстрировала, что нейронные связи у молодых людей активизировались в определенной части мозга, а у людей более старшего возраста, помимо активности в той же зоне, проявляла себя и часть предлобной коры головного мозга.

Канадские ученые, основываясь на результатах данного и многих других экспериментов, пришли к следующему выводу: биологическая нейроная сеть мозга людей среднего возраста могла дать слабину в определенной зоне, однако тут же подключалась другая часть мозга, компенсируя «недостачу». Таким образом, процесс старения приводит к тому, что люди в среднем возрасте и старше используют свой мозг буквально в большей степени. К тому же, налицо усиление биологической нейронной сети в других зонах мозга.

Наш мозг устроен таким образом, что он умеет справляться с обстоятельствами (противодействовать им), проявляя гибкость. И чем лучше следить за его здоровьем, тем лучше он справляется.

Исследователи предлагают целый комплекс мероприятий, позволяющих как можно дольше сохранить здоровье мозга:

Ученые научились лечить наследственные заболевания стволовыми клетками

МОСКВА, 1 июн — РИА Новости. Ученые впервые сумели полностью устранить генетическое заболевание с помощью стволовых клеток и комбинации методов генной терапии в пробирочных экспериментах с клетками больных людей. Авторы исследования, опубликованного в он-лайн версии журнала Nature, намерены как можно скорее довести инновацию до клинического применения.

Свою работу ученые из Испании и Италии посвятили борьбе с анемией Фанкони — тяжелым наследственным заболеванием крови, которое сопровождается снижением способности организма противостоять инфекциям и снабжать клетки кислородом. Заболевание вызывается мутациями в одном из 13 генов анемии Фанкони, часто приводит к отказу в работе костного мозга, лейкемии и другим формам раковых заболеваний. При этом даже после пересадки костного мозга у пациентов остается высокий риск развития рака и других серьезных сбоев в работе организма.

«Считается, что такие генетические нарушения можно скорректировать генными методами в клетках, полученных от пациента, затем превратить их в индуцированные плюрипотентные стволовые клетки, которые в свою очередь можно ввести в больной организм и превратить в клетки той ткани организма, где проявляется генетическое нарушение, устранив тем самым заболевание», — сказал ведущий автор исследования, профессор Хуан Карлос Исписуа Белмонте (Juan-Carlos Izpis?a Belmonte) из Центра регенеративной медицины в Барселоне, слова которого приводит пресс служба Института биологических исследований имени Солка, США (Salk Institute for Biological Studies).

Этот подход уже был испытан в экспериментах на мышах, однако возможность его применения для лечения заболеваний человеческого организма до последнего времени оставалась недоказанной.

Исследователи в своей работе использовали клетки кожи и волос нескольких пациентов, страдающих от анемии Фанкони. Генетический аппарат этих клеток ученые исправили с помощью генных методов, основанных на введении в клетки безвредных вирусов, привносящих в инфицированную клетку и «правильную» копию того или иного поврежденного гена. После этого с помощью подобных вирусных векторов ученые перевели исправленные клетки в состояние плюрипотентных стволовых клеток.

Сравнение полученных таким образом клеток показало, что они неотличимы не только от «искусственных» стволовых клеток, полученных из здоровых клеток человека, но и от эмбриональных стволовых клеток.

При этом ученым удалось показать, что полученные из больных клеток плюрипотентные клетки могут легко дифференцироваться и превращаться в гематопоэтические клетки-предшественницы для разных типов клеток крови, которые не могут вырабатываться в организме больных естественным путем из-за отказа в работе костного мозга.

Таким образом ученым удалось доказать возможность применения комбинации генных методов и стволовых клеток для лечения генетического заболевания, не поддающегося лечению с помощью обычных лекарств.

«Несмотря на то, что ни одного больного мы пока еще не вылечили, полученные нами здоровые «искусственные» стволовые клетки в теории могут быть пересажены больным людям для лечения болезни», — сказал Белмонте.

Существенным препятствием на пути к клиническим испытаниям подобной методики является использование вирусов для коррекции генных нарушений, а также для перевода клеток в плюрипотентное состояние, что может привести к развитию рака у пациентов, вылеченных подобным методом. Усилия авторов статьи будут в ближайшем будущем направлены на преодоление этих недостатков методики.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector