0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Древнейший механизм регенерации обнаружен у червей

Раскрыт секрет регенерации плоских червей

Биологи определили тип клеток и ключевой белок, обеспечивающие плоским червям удивительную способность восстанавливать свое тело даже из небольшого фрагмента.

Плоский червь Dugesia subtentaculata
© Eduard Solà/Wikimedia Commons

Способность планарий (Planariidae), одного из семейств плоских червей, к регенерации была известна зоологам давно. Если планарию разрезать на несколько частей, каждая из них регенерирует в целого червя, отрастив недостающие типы тканей. Из-за этой способности планарий стали называть «бессмертными под лезвием ножа». Ученые установили, что за регенерацию отвечают клетки, которые называются необластами. Но определить точно, какие именно из необластов играют ведущую роль, до недавнего времени не удавалось.

Специалист по биологии развития Алехандро Санчес Альварадо (Alejandro Sánchez Alvarado) из Института медицинских исследований Стоуерса в Канзас-Сити использовал новый метод изоляции клеток и определения генной активности в них. В результате он выделил у планарий двенадцать разновидностей необластов, в мембранах которых содержался определенный белок из группы тетраспанинов. Тетраспанины известны у многих животных, включая человека. Они задействованы в процессах движения и деления клеток. Играют тетраспанины важную роль и в опухолях, способствуя образованию метастазов.

Исследователи применили радиоактивное мечение белков и установили, что для регенерации планарий важен второй из двенадцати типов необластов (Nb2). В проведенном эксперименте именно эти клетки начинали быстро размножаться, когда планария была разрезана. В другом эксперименте одна инъецированная клетка Nb2 оказалась способной размножаться и диверсифицироваться, чтобы спасти планарий, которые получили смертельную дозу облучения.

Клетки Nb2 представляют собой особый тип стволовых клеток. Обычно только в начале развития стволовые клетки способны превращаться в любые разновидности клеток (такие стволовые клетки называют тотипотентными). Затем по мере развития организма его стволовые клетки оказываются способны давать начало только нескольким типам клеток (плюрипотентные) или даже только одному из них. Планариям однако удается во взрослом возрасте сохранять тотипотентные стволовые клетки.

Эти клетки распределены по всему телу планарии. Если животное получает рану, они увеличивают активность генов, ответственных за синтез тетраспанина. Его роль оказывается ключевой в регенерации. Если подавить его выработку клетками, повреждения на теле планарии не восстанавливаются. Точная функция белка пока неизвестна, но, вероятно, она влияет на связи между клетками и помогает им добираться туда, где нужна их работа.

Древнейший механизм регенерации обнаружен у червей

Древнейший механизм регенерации обнаружен у червей

Многие черви без проблем отращивают утраченные части тела, а для людей это — из области суперспособностей. Конечно, у червей тело куда проще и они даже не знают, что такое суперспособности, но людям все равно чудится какая-то глобальная несправедливость.

Ученые не первый год терзают червяков в поисках секрета регенерации и ближе всех к разгадке подошли специалисты из Университета Тафтса (США). В исследовании, опубликованном в «Биофизическом журнале», они сообщают, что обнаружили самый ранний из известных генетических механизмов, которые запускают активность транскрипции генов для создания новых голов или хвостов у планарий.

Планарии — это такие плоские черви, на которых очень удобно изучать регенерацию, поскольку они способны отращивать заново вообще всё, что у них может быть. В упомянутом исследовании использовался вид Dugesia japonica. Когда части этого плоского червя отрезаются или отрываются, оставшиеся ткани неизменно отращивают недостающее на правильных концах — будь то голова или хвост.

Предыдущие исследования показали, что первые гены, связанные с восстановлением недостающей части включаются примерно через 6 часов после ампутации. Но что происходит до того? До сих пор не было известно.

Ученые предположили, что в течение этого периода включаются некие электрические сигналы. Используя чувствительные к электрическому напряжению флуоресцентные красители, исследователи буквально воочию увидели, как возникает электрическая активность в поврежденной ткани. И лишь спустя несколько часов после появления этой активности, начинались изменения в экспрессии генов.

Исследователи выяснили, что именно эндогенные электрические сигналы позволяют клеткам общаться и принимать решения об их взаиморасположении и общей структуре органов, с тем, чтобы понимать, какие гены нужно включить.

Чтобы доказать, что определенная схема напряжения ответственна за включение правильных генов для каждого участка раны, ученые изменили потенциалы покоя клеток на разных концах червей и наблюдали эффекты. Эффекты были разные: например, регулируя потоки ионов, создающих характерные для головы или хвоста потенциалы, можно было создавать плоских червей с двумя головами, но без без хвоста. Или наоборот.

Ученые сравнили эти электрические сигналы, с теми, которые возникают в человеческом мозге. У людей процесс чем-то похож: приходит стимул, и первичные электрические сигналы между нейронами вызывают нисходящую активность электрической сети, вызывающую принятие решения или формирование памяти. По словам ученых, эта электрическая система очень древняя и очень консервативная.

Новые опыты будут посвящены тому, чтобы изучить электрические сигналы к регенерации более подробно. Например, исследователи хотели бы знать, как ткани принимают решения не только о направлении, но и о размере, форме и масштабе новых частей, которые они выращивают, и как биоэлектрические цепи хранят изменения в структуре тела, как это видно на примере двуглавых червей, которые продолжают делать двуглавых животных в последующих раундах регенерации.

Читать еще:  кишечные расстройства

Ученые полагают, что если они смогут выяснить, как манипулировать этими процессами, это даст ключ к новому подходу в области исправления врожденных дефектов, а также лечения травматических повреждений и дегенеративных возрастных заболеваний.

Регенерация частей тела — наше будущее

Кишечнодышащие черви обладают невероятной способностью к регенерации. У людей и этих червей много общих генов, поэтому ученые изучают последних в надежде когда-нибудь стимулировать регенерацию и у людей. Способность к регенерации частей тела всегда была увлекательной перспективой, вдохновляющей таких персонажей, как Росомаха, которые могут мгновенно исцелять себя и восстанавливать потерянные части тела. И теперь регенерация вдохновляет научные исследования. Многие виды животного царства могут регенерировать: членистоногие (например, скорпионы) могут выращивать придатки. Некоторые кольчатые черви могут регенерировать всего лишь из нескольких сегментов своего тела. Иглокожие (морские звезды) могут как самостоятельно ампутировать, так и повторно вырастить конечность. Амфибии (саламандры и тритоны) могут регенерировать конечность всего за месяц, а некоторые рептилии могут регенерировать свои хвосты.

Небольшие обитатели коралловых рифов, черви, которые прячутся в песке и являются одним из самых близких беспозвоночных к человеку, могут регенерировать любые части своего тела, которые были отрезаны, даже нервную систему и голову. Разрежьте такого червя пополам — и через пятнадцать дней будет два полных, неразличимых варианта. И еще они необычайно похожи по структуре тела на людей. Ученые задаются вопросом: раз уж у людей много таких же генов, можем ли мы так же?

«Я думаю, что у нас, как людей, есть потенциал для регенерации, но что-то мешает ей происходить», говорит профессор биологии Билли Сволла из Университета Вашингтона. Сволла — директор Friday Harbor Laboratories, которая занимается, в числе прочего, исследованием регенерации у беспозвоночных. «Я думаю, что у людей есть все необходимые гены, и если мы сможем понять, как их включить, мы сможем регенерировать».

Хотя все это похоже на научную фантастику, многие ученые считают, что регенерация частей человеческого тела вполне достижима. Мы уже восстанавливаем кожу, части других органов и ногти; у нас также есть много необходимых генов, из которых практически все используются другими животными для регенерации структур их тела. Мы могли бы восстанавливать нервную систему, если бы поняли механизм, который черви используют для регенерации.

Обратная инженерия червей

Дорожная карта человека, которая содержится в нашей ДНК, присутствует в каждой клетке нашего тела и также должна содержать достаточно информации для создания или регенерации тела. Однако доступ к этой части плана недоступен для человека по какой-то эволюционной причине. Одна из возможных причин этого заключается в том, что регенерация требует слишком много энергии у большого и сложного организма вроде человека. Может быть и такое, что наша чрезвычайно развитая иммунная система останавливает этот процесс при помощи ответов, например, ввиду формирования рубцов.

Команда Вашингтонского университета исследовала, какие схемы экспрессии генов имеют место, когда у червей начинается регенерация. Поскольку регенерация у каждого червя идет по одной и той же схеме после начала, ученые считают, что должен существовать мастер-ген. Если этот ген начинает процесс, он может стать триггером для регенерации и у человека.

Они также пытаются определить, какие клеточные функции выступают в роли строительных блоков регенерации. Стволовые клетки — очевидный вариант, но могут быть и другие типы клеток, которые могут использоваться для регенерации. Наконец, команда ученых надеется использовать активацию генов или редактирование, чтобы запустить процесс у других животных, включая людей.

В конечном счете медицина могла бы принять совершенно другой вид. Жертвы ожога могли бы восстанавливать кожу, а люди, которые стоят в очереди на трансплантацию, выращивать новые конечности и внутренние органы. Конечно, такая технология, если она возможна, появится не скоро. Препятствия колоссальны, а над дублированием рабочих нервных систем человека, мозга и внутренних органов придется провести очень глубокую работу. Возможно, на это уйдет сотня лет.

РЕГЕНЕРАЦИЯ

РЕГЕНЕРАЦИЯ, восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация обычно происходит в случае повреждения или утраты какого-нибудь органа или части организма. Однако помимо этого в каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такую регенерацию, обычно не связанную с повреждениями или утратой, называют физиологической. Регенерацию, происходящую после повреждения или утраты какой-либо части тела, называют репаративной. Здесь мы рассмотрим только репаративную регенерацию.

Репаративная регенерация может быть типичной или атипичной. При типичной регенерации утраченная часть замещается путем развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (аутотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага. При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

РЕГЕНЕРАЦИЯ У ЖИВОТНЫХ

Способность к регенерации широко распространена среди животных. Вообще говоря, низшие животные чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого ее фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как гребневики и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые близкородственные животные сильно различаются в этом отношении. Так, у дождевого червя из небольшого кусочка тела может полностью регенерировать новая особь, тогда как пиявки неспособны восстановить один утраченный орган. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит.

Читать еще:  Почему повышается холестерин

Многие беспозвоночные способны к регенерации значительной части тела. У губок, гидроидных полипов, плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент. Губки трех разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трем исходным.

Ленточный червь, длина которого во много раз превышает его ширину, способен воссоздать целую особь из любого участка своего тела. Теоретически возможно, разрезав одного червя на 200 000 кусочков, получить из него в результате регенерации 200 000 новых червей. Из одного луча морской звезды может регенерировать целая звезда.

Моллюски, членистоногие и позвоночные не способны регенерировать целую особь из одного фрагмента, однако у многих из них происходит восстановление утраченного органа. Некоторые в случае необходимости прибегают к аутотомии. Птицы и млекопитающие как эволюционно наиболее продвинутые животные меньше других способны к регенерации. У птиц возможно замещение перьев и некоторых частей клюва. Млекопитающие могут восстанавливать покров, когти и частично печень; они способны также к заживлению ран, а олени – к отращиванию новых рогов взамен сброшенных.

Процессы регенерации.

В регенерации у животных участвуют два процесса: эпиморфоз и морфаллаксис. При эпиморфической регенерации утраченная часть тела восстанавливается за счет активности недифференцированных клеток. Эти клетки, похожие на эмбриональные, накапливаются под пораненным эпидермисом у поверхности разреза, где они образуют зачаток, или бластему. Клетки бластемы постепенно размножаются и превращаются в ткани нового органа или части тела. При морфаллаксисе другие ткани тела или органа непосредственно преобразуются в структуры недостающей части. У гидроидных полипов регенерация происходит главным образом путем морфаллаксиса, а у планарий в ней одновременно участвуют и эпиморфоз, и морфаллаксис.

Регенерация путем образования бластемы широко распространена у беспозвоночных и играет особенно важную роль в регенерации органов у амфибий. Существует две теории происхождения бластемных клеток: 1) клетки бластемы происходят из «резервных клеток», т.е. клеток, оставшихся неиспользованными в процессе эмбрионального развития и распределившихся по разным органам тела; 2) ткани, целостность которых была нарушена при ампутации, «дедифференцируются» в области разреза, т.е. дезинтегрируются и превращаются в отдельные бластемные клетки. Таким образом, согласно теории «резервных клеток», бластема образуется из клеток, остававшихся эмбриональными, которые мигрируют из разных участков тела и скапливаются у поверхности разреза, а согласно теории «дедифференцированной ткани», бластемные клетки происходят из клеток поврежденных тканей.

В подтверждение как одной, так и другой теории имеется достаточно данных. Например, у планарий резервные клетки более чувствительны к рентгеновским лучам, чем клетки дифференцированной ткани; поэтому их можно разрушить, строго дозируя облучение, чтобы не повредить нормальные ткани планарии. Облученные таким образом особи выживают, но утрачивают способность к регенерации. Однако если только переднюю половину тела планарии подвергнуть облучению, а затем разрезать, то регенерация происходит, хотя и с некоторой задержкой. Задержка свидетельствует о том, что бластема образуется из резервных клеток, мигрирующих на поверхность разреза из необлученной половины тела. Миграцию этих резервных клеток по облученной части тела можно наблюдать под микроскопом.

Сходные эксперименты показали, что у тритона регенерация конечностей происходит за счет бластемных клеток местного происхождения, т.е. за счет дедифференцировки поврежденных тканей культи. Если, например, облучить всю личинку тритона, за исключением, скажем, правой передней конечности, а затем ампутировать эту конечность на уровне предплечья, то у животного отрастает новая передняя конечность. Очевидно, что необходимые для этого бластемные клетки поступают именно из культи передней конечности, так как все остальное тело подверглось облучению. Более того, регенерация происходит даже в том случае, если облучают всю личинку, за исключением участка шириной 1 мм на правой передней лапке, а затем последнюю ампутируют, производя разрез через этот необлученный участок. В этом случае совершенно очевидно, что бластемные клетки поступают с поверхности разреза, поскольку все тело, включая правую переднюю лапку, было лишено способности к регенерации.

Читать еще:  Баскетболиста дисквалифицировали из-за положительного теста на беременность

Описанные процессы анализировали с применением современных методов. Электронный микроскоп позволяет наблюдать изменения в поврежденных и регенерирующих тканях во всех деталях. Созданы красители, выявляющие определенные химические вещества, содержащиеся в клетках и тканях. Гистохимические методы (с применением красителей) дают возможность судить о биохимических процессах, происходящих при регенерации органов и тканей.

Полярность.

Одна из самых загадочных проблем в биологии – происхождение полярности у организмов. Из шаровидного яйца лягушки развивается головастик, у которого с самого начала на одном конце тела находится голова с головным мозгом, глазами и ртом, а на другом – хвост. Подобным же образом, если разрезать тело планарии на отдельные фрагменты, на одном конце каждого фрагмента развивается голова, а на другой – хвост. При этом голова всегда образуется на переднем конце фрагмента. Эксперименты ясно показывают, что у планарии существует градиент метаболической (биохимической) активности, проходящий по передне-задней оси ее тела; при этом наивысшей активностью обладает самый передний конец тела, а в направлении к заднему концу активность постепенно снижается. У любого животного голова всегда образуется на том конце фрагмента, где метаболическая активность выше. Если направление градиента метаболической активности в изолированном фрагменте планарии изменить на противоположное, то и формирование головы произойдет на противоположном конце фрагмента. Градиент метаболической активности в теле планарий отражает существование какого-то более важного физико-химического градиента, природа которого пока неизвестна.

В регенерирующей конечности тритона полярность новообразуемой структуры, по-видимому, определяется сохранившейся культей. По причинам, которые еще остаются неясными, в регенерирующем органе формируются только структуры, расположенные дистальнее раневой поверхности, а те, что расположены проксимальнее (ближе к телу), не регенерируют никогда. Так, если ампутировать кисть тритона, а оставшуюся часть передней конечности вставить обрезанным концом в стенку тела и дать этому дистальному (отдаленному от тела) концу прижиться на новом, необычном для него месте, то последующая перерезка этой верхней конечности вблизи плеча (освобождающая ее от связи с плечом) приводит к регенерации конечности с полным набором дистальных структур. У такой конечности имеются на момент перерезки следующие части (начиная с запястья, слившегося со стенкой тела): запястье, предплечье, локоть и дистальная половина плеча; затем, в результате регенерации, появляются: еще одна дистальная половина плеча, локоть, предплечье, запястье и кисть. Таким образом, инвертированная (перевернутая) конечность регенерировала все части, расположенные дистальнее раневой поверхности. Это поразительное явление указывает на то, что ткани культи (в данном случае культи конечности) контролируют регенерацию органа. Задача дальнейших исследований – выяснить, какие именно факторы контролируют этот процесс, что стимулирует регенерацию и что заставляет клетки, обеспечивающие регенерацию, скапливаться на раневой поверхности. Некоторые ученые полагают, что поврежденные ткани выделяют какой-то химический «раневой фактор». Однако выделить химическое вещество, специфичное для ран, пока не удалось.

РЕГЕНЕРАЦИЯ У РАСТЕНИЙ

Широкое распространение регенерации в царстве растений обусловлено сохранением у них меристем (тканей, состоящих из делящихся клеток) и недифференцированных тканей. В большинстве случаев регенерация у растений – это, в сущности, одна из форм вегетативного размножения. Так, на кончике нормального стебля имеется верхушечная почка, обеспечивающая непрерывное образование новых листьев и рост стебля в длину в течение всей жизни данного растения. Если отрезать эту почку и поддерживать ее во влажном состоянии, то из имеющихся в ней паренхимных клеток или из каллуса, образующегося на поверхности среза, часто развиваются новые корни; почка при этом продолжает расти и дает начало новому растению. То же самое происходит в природе, когда отламывается ветка. Плети и столоны разделяются в результате отмирания старых участков (междоузлий). Таким же образом разделяются корневища ириса, волчьей стопы или папоротников, образуя новые растения. Обычно клубни, например клубни картофеля, продолжают жить после отмирания подземного стебля, на котором они выросли; с наступлением нового вегетационного периода они могут дать начало собственным корням и побегам. У луковичных растений, например у гиацинтов или тюльпанов, побеги формируются у основания чешуй луковицы и могут в свою очередь образовывать новые луковицы, которые в конечном счете дают корни и цветоносные стебли, т.е. становятся самостоятельными растениями. У некоторых лилейных воздушные луковички образуются в пазухах листьев, а у ряда папоротников на листьях вырастают выводковые почки; в какой-то момент они опадают на землю и возобновляют рост.

Корни менее способны к образованию новых частей, чем стебли. Клубню георгина для этого необходима почка, образующаяся у основания стебля; однако батат может дать начало новому растению из почки, образуемой корневой шишкой.

Листья тоже способны к регенерации. У некоторых видов папоротников, например у кривокучника (Camptosorus), листья сильно вытянуты и имеют вид длинных волосовидных образований, заканчивающихся меристемой. Из этой меристемы развивается зародыш с зачаточными стеблем, корнями и листьями; если кончик листа родительского растения наклонится вниз и соприкоснется с землей или мхом, зачаток начинает расти. Новое растение отделяется от родительского после истощения этого волосовидного образования. Листья суккулентного комнатного растения каланхое несут по краям хорошо развитые растеньица, которые легко отпадают. Новые побеги и корни формируются на поверхности листьев бегонии. Специальные тельца, называемые зародышевыми почками, развиваются на листьях некоторых плауновых (Lycopodium) и печеночников (Marchantia); упав на землю, они укореняются и образуют новые зрелые растения.

Многие водоросли успешно размножаются, расчленяясь на фрагменты под ударами волн. См. также СИСТЕМАТИКА РАСТЕНИЙ.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector